模糊控制理论的 模糊控制的基本理论

网看天下
网看天下 这家伙很懒,还没有设置简介...

0 人点赞了该文章 · 5 浏览

模糊控制理论的 模糊控制的基本理论

  所谓模糊控制,就是在控制方法上应用模糊集理论、模糊语言变量及模糊逻辑推理的知识来模拟人的模糊思维方法,用计算机实现与操作者相同的控制。该理论以模糊集合、模糊语言变量和模糊逻辑为基础,用比较简单的数学形式直接将人的判断、思维过程表达出来,从而逐渐得到了广泛应用。应用领域包括图像识别、自动机理论、语言研究、控制论以及信号处理等方面。在自动控制领域,以模糊集理论为基础发展起来的模糊控制为将人的控制经验及推理过程纳入自动控制提供了一条便捷途径。

  1.模糊控制器的基本结构

  如下图所示,模糊控制器的基本结构包括知识库、模糊推理、输入量模糊化、输出量精确化四部分。

  2.知识库

  知识库包括模糊控制器参数库和模糊控制规则库。模糊控制规则建立在语言变量的基础上。语言变量取值为“大”、“中”、“小”等这样的模糊子集,各模糊子集以隶属函数表明基本论域上的精确值属于该模糊子集的程度。因此,为建立模糊控制规则,需要将基本论域上的精确值依据隶属函数归并到各模糊子集中,从而用语言变量值(大、中、小等)代替精确值。这个过程代表了人在控制过程中对观察到的变量和控制量的模糊划分。由于各变量取值范围各异,故首先将各基本论域分别以不同的对应关系,映射到一个标准化论域上。通常,对应关系取为量化因子。为便于处理,将标准论域等分离散化,然后对论域进行模糊划分,定义模糊子集,如NB、PZ、PS等。

  同一个模糊控制规则库,对基本论域的模糊划分不同,控制效果也不同。具体来说,对应关系、标推论域、模糊子集数以及各模糊子集的隶属函数都对控制效果有很大影响。这3类参数与模糊控制规则具有同样的重要性,因此把它们归并为模糊控制器的参数库,与模糊控制规则库共同组成知识库。

  模糊控制规则的来源有3条途径:基于专家经验和实际操作,基于模糊模型,基于模糊控制的自学习。

  3.模糊化

  将精确的输入量转化为模糊量F有两种方法:

  (1)将精确量转换为标准论域上的模糊单点集。精确量x经对应关系G转换为标准论域x上的基本元素,则该元素的模糊单点集F为

  uF(u)=1 if u=G(x)

  

  (2)将精确量转换为标准论域上的模糊子集。

  精确量经对应关系转换为标准论域上的基本元素,在该元素上具有最大隶属度的模糊子集,即为该精确量对应的模糊子集。

  4.模糊推理

  最基本的模糊推理形式为:

    前提1 IF A THEN B

    前提2 IF A′

    结论 THEN B′

  其中,A、A′为论域U上的模糊子集,B、B′为论域V上的模糊子集。前提1称为模糊蕴涵关系,记为A→B。在实际应用中,一般先针对各条规则进行推理,然后将各个推理结果总合而得到最终推理结果。

  5.精确化

  推理得到的模糊子集要转换为精确值,以得到最终控制量输出y。目前常用两种精确化方法:

  (1)最大隶属度法。在推理得到的模糊子集中,选取隶属度最大的标准论域元素的平均值作为精确化结果。

  (2)重心法。将推理得到的模糊子集的隶属函数与横坐标所围面积的重心所对应的标准论域元素作为精确化结果。

  在得到推理结果精确值之后,还应按对应关系,得到最终控制量输出y。

发布于 2023-01-07 08:58

免责声明:

本文由 网看天下 原创或收集发布于 火鲤鱼 ,著作权归作者所有,如有侵权可联系本站删除。

火鲤鱼 © 2025 专注小微企业服务 冀ICP备09002609号-8